ISIMIP: Consistent climate impact scenarios across sectors

Jacob Schewe

Potsdam Institute for Climate Impact Research

ISIMIP setup

ISIMIP phases

- Fast Track (2011-2013):
 - Future projections under 4 RCPs
 - Data publicly available; many studies published
- ISIMIP2a (2014-2016):
 - Historical validation under 4 alternative observational datasets
 - Data publicly available early 2017 (most sectors); studies under way; ERL Focus Issue to appear 2017
- ISIMIP2b (2016-2017):
 - Future projections under 2 RCPs, extended PI-control and RCP2.6 scenarios → robust statistics for impacts of 1.5°C
 - Simulations being set up now, to be available by fall 2017

Focus Regions

...allow comparison among regional-scale models, and between regional and global models

Selected results

Global multi-model impacts assessments, for example...

Selected results

Scaling of impacts with global warming...

Cross-sectoral analyses

Multi-impact "hot-spots" (Piontek et al., 2014)

Note: Early analysis with a limited number of sectors

Cross-sectoral analyses

		1.5°C	2°C		
Heat wave (warm spell) duration [month]					
(Global	1.1 [1;1.3]	1.6 [1.4;1.8]	Tropical regions up to 2 months at 1.5°C or up to 3 months at 2°C	
Reduction in annual water availability [%]					
Mediterr	anean	9 [5;16]	17 [8;28]	Other dry subtropical regions like Central America and South Africa also at risk	
Increase in heavy precipitation intensity [%]					
C	Global	5 [4;6]	7 [5;7]	Global increase in intensity due to warming; high latitudes (>45°N) and monsoon regions affected most.	
Sout	h Asia	7 [4;8]	10 [7;14]		
Global sea-level rise	3				
in 2100) [cm]	40 [30;55]	50 [35;65]	1.5°C end-of-century rate about 30% lower than for 2°C reducing	
2081-2100 rate [mm/yr]		4 [3;5.5]	5.5 [4;8]	long-term SLR commitment.	
	_				
Fraction of coral reef cells at risk of long-term degradation [Constant case, %]					
	2050	90 [50;99]	98 [86;100]	Only limiting warming to 1.5°C may leave window open for some ecosystem adaptation.	
	2100	70 [14;98]	99 [85;100]		
Changes in local crop yields over global and tropical present day agricultural areas including the effects of CO2-fertilization [%]					
Wheat C	Global ropics	2 [-6;17] -9 [-25;12]	0 [-8;21] -16 [-42;14]	Projected yield reductions are largest for tropical regions, while high-latitude regions may see an increase. Projections not including highly uncertain positive effects of CO. for tilination expected reductions	
Maize G	Global ropics	-1 [-26;8] -3 [-16;2]	-6 [-38;2] -6 [-19;2]		
Soy C	Global	7 [-3;28]	I [-12;34]	for all crop types of about 10% globally already at 1.5°C and further reductions at 2°C.	
Т	ropics	6 [-3;23]	7 [-5;27]		
Rice C	Global	7 [-17;24] 6 [0:20]	7 [-14;27] 6 [0:24]		

1.5°C or 2°C: Makes a difference for impacts (Schleussner et al.2016)

Many impacts are non-linear in temperature. Has implications for climate policy (Ricke et al., 2016)

Cross-sectoral analyses

- Human livelihood conditions measured through a comprehensive indicator.
- In some countries, projected changes in resources threaten livelihoods.
- In other countries, uncertainty in projections affects assessment of livelihoods.

(Lissner et al., 2014)

General lessons

- Uncertainty related to impact modeling is substantial
 - often similar to/larger than climatemodel uncertainty
- RCP-spread can often be minimized by using ΔT_{global} as frame of reference
 - at least for aggregate metrics
- It's an ensemble of opportunity
 - in some areas of great concern, no or only few models exist (e.g. human health, biodiversity...)

Conclusions

- ISIMIP has the most comprehensive database of global (and regional) climate impact simulations
- Consistency across models and sectors makes it useful for applications such as migration, where multiple climate impacts combine
- Note many other ongoing impact modelling activities (AgMIP, WFaS, ...)
- ISIMIP should be continuously developed to serve needs of various users

→ What could ISIMIP do to make data more useful for migration/population modelling in the future?

