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Abstract. Population data represent an essential component in studies focusing on human–nature interrela-
tionships, disaster risk assessment and environmental health. Several recent efforts have produced global- and
continental-extent gridded population data which are becoming increasingly popular among various research
communities. However, these data products, which are of very different characteristics and based on different
modeling assumptions, have never been systematically reviewed and compared, which may impede their ap-
propriate use. This article fills this gap and presents, compares and discusses a set of large-scale (global and
continental) gridded datasets representing population counts or densities. It focuses on data properties, method-
ological approaches and relative quality aspects that are important to fully understand the characteristics of the
data with regard to the intended uses. Written by the data producers and members of the user community, through
the lens of the “fitness for use” concept, the aim of this paper is to provide potential data users with the knowl-
edge base needed to make informed decisions about the appropriateness of the data products available in relation
to the target application and for critical analysis.
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1 Introduction

The distribution and density of human population contin-
ues to be a critical component to measuring, mapping and
understanding human–environment interrelationships; iden-
tifying populations at risk of infectious diseases or dis-
asters; and informing management and policy decisions
from local- to global-level initiatives (e.g., Wesolowski et
al., 2014; Simarro et al., 2011; McDonald et al., 2011; Jones
et al., 2008; McGranahan et al., 2007; Doocy et al., 2007).
The traditional form of collecting population data is through
a census or registry, and those population counts can be
spatially linked to boundary datasets representing enumer-
ation areas (the most basic unit of collected census data)
or administrative units in a Geographic Information Sys-
tem (GIS). More recently, an increasing use of fully geo-
referenced censuses has made building-level mapping more
feasible in some countries. However, census data vary sub-
stantially across countries with regard to quality, the number
and size of enumerated areas, the frequency of data collec-
tion and the level of confidentiality depending on detail. The
size of census units also varies significantly within coun-
tries between rural and urban areas. Thus, to be useful for
many analytical purposes, substantial efforts are required to
harmonize such enumerated data (de Sherbinin, 2017; Zor-
aghein et al., 2016; Schroeder, 2007). Since Tobler’s “World
population in a grid of spherical quadrilaterals” (Tobler et
al., 1997) and Liverman et al.’s “People and Pixels” (Liv-
erman et al., 1998), the benefits of gridded population data
have been acknowledged. As a consequence, the scientific
community has increasingly invested in ways to create global
georeferenced data products that help overcome the incon-
sistencies in census-derived national population data and fa-
cilitate their integration with other gridded spatial datasets
such as remote sensing data products. This article, a product
of the POPGRID Data Collaborative (POPGRID, 2018), de-
scribes the variety of gridded population data products that
have been created over the past 20 years and is an effort to
aid users in better understanding the nature of these products,
their qualities and forms of appropriate uses.

There is high demand for modeled gridded population
datasets particularly in countries with less detailed or infre-
quent censuses. These datasets, for example, support land
use and urban planning (Dong et al., 2017), measurement
of economic development (Nordhaus, 2006; Uchida and
Nelson, 2009; Roberts et al., 2017), transportation infras-
tructure management and rural access (Iimi et al., 2016;
World Bank, 2016), resource allocation strategies (Islam
et al., 2006; Deichmann et al., 2011), disaster risk miti-
gation, management and reduction (Ehrlich et al., 2018a;
Aubrecht et al., 2016; Gunasekera et al., 2015; Mondal and
Tatem, 2012; Taramelli et al., 2010), climate change research
(Blankespoor et al., 2017; Dasgupta et al., 2011; McGrana-
han et al., 2007), sampling design for household surveys
(Blankespoor et al., 2018; Thomson et al., 2017), public

health campaigns and assessments (Snow et al., 1999; Hay
et al., 2004; Jones et al., 2008; Weber et al., 2018; Dunn
et al., 2019), and sustainable resource management (Koch et
al., 2008; Parish et al., 2012; McDonald et al., 2011) among
many other applications1. International frameworks for de-
velopment and sustainability depend on the availability of
population data, which are commonly used as a denominator
in calculating different metrics and indicators. Such frame-
works include the Sustainable Development Goals (SDGs),
the Sendai Framework for Disaster Risk Reduction, the UN-
FCCC Paris Agreement and the United Nations New Urban
Agenda, to mention just a few.

The field has seen advances at multiple levels. First, the
spatial resolution of underlying census data available for geo-
processing, along with the standards for producing such data
(United Nations, 2009), has improved dramatically in many
countries since the creation of the earliest gridded population
data products such as the Gridded Population of the World
version 1 (Tobler et al., 1995; Deichmann, 1996). Second,
significant progress has been made through advances in in-
formation extraction and classification of populated land area
from remote sensing data at various resolutions (Wardrop et
al., 2018). The increased availability and spatial granularity
of remotely sensed information about topography, vegeta-
tion and land cover has been critical to improving the iden-
tification of such places that are potentially inhabited and
even the estimation of counts of people living there (Frye
et al., 2018; Nieves et al., 2017; Pesaresi et al., 2013). Third,
the combination of access, increased computing power and
greater spatial accuracy in ancillary datasets has provided
the basis for methodological advances to redistribute census-
enumerated population counts to grid cells at continental and
global scales with high accuracy (e.g., Freire et al., 2018)
and to create time series of population estimates that can be
used to fill in data gaps between national census surveys that
are commonly taken at decadal intervals (e.g., WorldPop and
CIESIN, 2018).

As a result of these recent developments, there are now
several global and continental gridded population datasets
that are based on different modeling approaches and input
data layers. As might be expected, there are similarities but
also important differences among these products, and yet to
date there has neither been a systematic review of these var-
ious approaches nor a comparison of the corresponding out-
puts. This represents a serious gap in the literature as these
differences can easily lead to misunderstandings or inappro-
priate use of population grids. The objective of the paper is
to fill that gap by helping guide users in forms of appropriate,
uncertainty-aware use of the available global gridded popu-

1The citations listed here are just a few of hundreds of applica-
tions that could have been identified. This paper does not aim to be a
complete review of the literature or applications of all usages of the
gridded data products under review. Links to citations of particular
data products are found in Sect. 6 below.
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lation datasets in different application areas. Such an assess-
ment is necessary as knowledge of underlying approaches
and input data can inform about what each gridded product
actually measures. For example, the exposure of a target pop-
ulation to disasters requires a population grid that (1) covers
the area of interest, (2) provides a meaningful analytical unit
(i.e., the size of the grid cell), (3) warrants the temporal cur-
rency needed relative to the time of interest, and (4) estimates
the correct target population.2 This example demonstrates
why applying population grids is not trivial; grids have differ-
ent characteristics that may affect the accuracy and precision
of the analysis but also their suitability in a given context.

The above aspects together provide the essential compo-
nents to assess the fitness for use of a data product in the
context of relative data quality (Tayi and Ballou, 1998). “Fit-
ness for use” is a concept that has often been used to assess
the appropriateness of a given spatial dataset for an intended
purpose (Agumya and Hunter, 1999; de Bruin et al., 2001;
Devillers et al., 2007). Here, this concept will be applied to
guide a growing user community in making informed deci-
sions regarding the most appropriate dataset(s) for their in-
tended use by better understanding the characteristics of the
available different data products that also include the model-
ing assumptions behind them. Spatial, thematic and temporal
accuracy play a key role in formalizing fitness for use. How-
ever, the multidimensionality of accuracy in the case of pop-
ulation grids is further driven by the nature and heterogeneity
of the input population data, the use and characteristics of an-
cillary data involved, and the methodological framework ap-
plied to redistribute population counts to grid cells. All these
factors will be systematically explored in this article.

This review targets researchers and applied users in the
geospatial, demographic, environmental and land use re-
search communities with diverse needs. Section 2 begins
with a brief history of population gridding. Section 3 looks
at commonalities and differences in methods applied and an-
cillary data used to produce gridded population data. Sec-
tion 4 provides an introduction to the data products of inter-
est herein and summarizes the approaches behind the most
recently released global as well as some selected regional
and national gridded population datasets. Section 5 provides
a comparative discussion of several components related to
the fitness for use of the different data products. Finally, we
list guidelines that can help the user community make in-
formed decisions related to the fitness of a given population
data product for their intended use and identify future av-
enues of work and needed investments in Sect. 6.

2In the production of gridded population data, the underlying
census data are accepted as demographically accurate. While de-
mographers concern themselves with such issues as age heaping
(Myers, 1993) or completeness of registrations or census samples
(e.g., Potter and Ordóñez, 1976) at the national and first-order ad-
ministrative level, to the extent that such problems exist (perhaps
to an even greater degree) in the fine-grain, underlying spatially re-
fined data, these issues are inherited into the gridded data products.

2 People as gridded distribution: background and
historical development

In the past, mapping population typically entailed linking
tabulated population statistics to vector features, such as
points (e.g., geographic coordinates indicating city centers)
and/or polygons (most notably, administrative units or census
enumeration areas). Beginning in the 1990s, a new approach
to mapping population distributions emerged, which was to
convert population data from irregular vector formats to grid-
ded surfaces composed of regular, standardized grid cells or
pixels (e.g., Martin and Bracken, 1991; Tobler et al., 1995;
Martin, 1996; Balk et al., 2006; Thomson et al., 2017).

The impetus to grid population data arose soon after the
first GIS software packages were developed and as the spa-
tially oriented research community began to use a growing
number of gridded biophysical and geophysical data prod-
ucts. Regular grids represented an efficient and consistent
data storage format, and the move to gridded data – already
in use by the climatological modeling community – was rein-
forced by the growing array of remote sensing data products
that began to appear in the 1970s and 1980s. By gridding
population, researchers were able to more easily integrate
population count and density data with biophysical data to
better understand spatial distributions and components of so-
cioenvironmental systems. Furthermore, by decoupling the
data from their original administrative boundaries, popula-
tions could then be easily aggregated to different units of
interest (e.g., watersheds or climate zones) for spatial and
statistical analysis (Balk et al., 2009).

Early efforts to grid populations include an African pop-
ulation grid for UNEP’s World Atlas of Desertification (De-
ichmann and Eklundh, 1991), the NASA Goddard Institute
for Space Studies’ Global Distribution of 1984 Population
Density at 1◦× 1◦ Resolution (Fung et al., 1991) and To-
bler’s pycnophylactic method (Tobler et al., 1997), which
resulted in the first version of Gridded Population of the
World in 1995. These early approaches spread populations
evenly across grid cells within input census units, with ad-
justment effects applied (in the case of the pycnophylactic
method) at the unit boundaries. One inherent problem of
these early modeled outputs is the existence of aggregation
effects that often lead to analytical challenges, as described
in the next paragraph. Two concomitant changes helped to
partially overcome this inherent problem: first, improvement
in the spatial resolution of the underlying population data,
and increased computation capacity to use higher-resolution
data, have reduced the impact of this problem for many ap-
plications. Second, as methods and data availability have pro-
gressed, researchers also sought to improve the spatial reso-
lution of population estimates by reallocating populations us-
ing ancillary datasets, a spatial refinement strategy known as
dasymetric mapping (Semenov-Tian-Shansky, 1928; Wright,
1936), in combination with different statistical methods (e.g.,
Wu et al., 2005). Both dasymetric and statistical techniques
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continue to play an important role in gridded population
mapping (Mennis, 2009), as discussed below. In addition to
such spatial refinement strategies, ongoing efforts also focus
on improving the temporal coverage and temporal resolution
as well as increasing the variety of population characteristics
mapped.

While the development of consistent, comparable grids is
what makes gridded data products so useful, there are some
important implications that need to be addressed, as should
be the case for any geospatial data. Population is not ran-
domly distributed and therefore the allocation and represen-
tation of populations will always be subject to aggregation ef-
fects. These effects have been described in the geography lit-
erature as the modifiable areal unit problem (MAUP) (Open-
shaw and Taylor, 1981). According to MAUP, the level of
aggregation – in this case the census unit or administrative
level – and the shape of the reporting units can affect the
analysis in ways that are difficult to predict. MAUP is man-
ifested in the flawed assumption of homogeneity of popu-
lation distributions across census reporting units. The spa-
tial resolution of a gridded population dataset determines the
output analytical unit and thus will have implications due to
these same aggregation effects after transitioning population
counts from vector boundaries to grid cells. In other words,
these aggregation-related problems of enumerating data are
not eliminated but are propagated into a different data struc-
ture through the creation of gridded population data.

As one of the most persistent problems in geographi-
cal analysis, MAUP-related research has made significant
progress to better understand the sensitivity of analytical re-
sults due to changing aggregation levels using synthetic and
real-world data (Amrhein, 1995; Steel and Holt, 1996; Flow-
erdew et al., 2001; Pawitan and Steel, 2006; Wong, 2009;
Arbia and Petrarca, 2011; Maclaurin et al., 2015). However,
because of this sensitivity, it is important to recognize that
MAUP affects the fitness for use of data products for spe-
cific analyses in which the spatial precision of population
locations is critical. Other implications that affect the qual-
ity of population grids have been reported by the data pro-
ducers, including temporal differences of input and ancillary
variables as well as the measurement construct of population
that is mapped. While these quality aspects are important to
help the user community by guiding general applications, the
impact of these aspects on the fitness for use of the data prod-
ucts for specific applications is difficult to measure and not
well understood.

3 Putting people in places: key methods and
ancillary data

3.1 Methods for population redistribution

Understanding the fundamentals of the different data inte-
gration approaches is an important aspect in evaluating the
fitness of any given dataset for specific uses or cases. The

process of gridded population mapping requires reallocation
of spatial data from source units into target units, usually as a
form of disaggregation that can be done through different ap-
proaches including various forms of areal interpolation and
statistical modeling.

Areal weighting techniques (the simplest form of areal in-
terpolation, also known as proportional reallocation) evenly
redistribute source data into target grid cells based on propor-
tions of overlap with no ancillary data input informing the
process (Goodchild and Lam, 1980; Mennis and Hultgren,
2006) (Fig. 1a). The source input data may be census-based
or other administrative data, and the target grid cell repre-
sents a spatial unit which is generally smaller than the source
units. An assumption associated with this approach is that the
population is uniformly redistributed from the source units to
target cells that overlap with the source units. This assump-
tion is a gross simplification as population distributions are
not uniform, but the approach is computationally efficient
and simple in creating spatially explicit and globally con-
sistent population estimates. Such products are well suited
for informing policy-making efforts that do not require fine
spatial resolution (Doxsey-Whitfield et al., 2015), or for per-
forming correlation analyses in which endogeneity issues are
excluded (e.g., Cohen and Small, 1998). The Gridded Popu-
lation of the World (GPWv4) product is an example of this
approach.

When ancillary data inform the redistribution through
areal interpolation from source area to target cell, the tech-
nique is referred to as dasymetric mapping (Semenov-Tian-
Shansky, 1928; Wright, 1936; Eicher and Brewer, 2001;
Mennis, 2003; Mennis and Hultgren, 2006). The ancillary
variables, often produced and available at finer spatial de-
tail than the input population data, can be used to de-
velop weighting schemes for reallocating population from
the source area to target units depending on existing or as-
sumed relationships between the two. Ancillary variables
can include land cover, topography, land use zones, street
networks, remote sensing data and more (for details and
more examples see Zandbergen and Ignizio, 2010; Nieves
et al., 2017; for an overview see Mennis, 2009). For exam-
ple, redistributing population from a source area (e.g., a cen-
sus tract) that includes built or developed parts along with
forest and agricultural land uses will more heavily weight
the built area in redistributing population counts because it is
more likely that these areas are populated (Mennis and Hult-
gren, 2006; Bhaduri et al., 2014). All dasymetric mapping
approaches rely on existing relationships between popula-
tion (e.g., provided by the input census data) and ancillary
information (e.g., land cover) that can be exploited to redis-
tribute population to finer spatial units with higher accuracy.
More traditional dasymetric approaches vary in the alloca-
tion method applied, ranging from binary dasymetric refine-
ment (Fig. 1b, Eicher and Brewer, 2001) to more complex
weighting approaches (Fig. 1c) such as intelligent dasymet-
ric mapping (Mennis and Hultgren, 2006). These approaches
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Figure 1. Schematic illustration of different types of techniques for population redistribution or allocation from source to target grid cells:
(a) areal weighting as the simplest form of areal interpolation that does not use any ancillary variables; (b) dasymetric mapping using binary
ancillary variables that inform and refine areal weighting; (c) dasymetric mapping using varying population weights that may be empirically
derived or based on set rules; (d) statistical modeling to estimate relationships that can be used for population modeling. The different grey
tones in (b–d) indicate different underlying data informing the areal interpolation process.

differ in the way relationships between population and ancil-
lary variables are derived (i.e., presence/absence based, em-
pirically derived or optimized) to determine weights for dif-
ferent locations to inform the disaggregation of the popula-
tion totals.

Several statistical modeling approaches have been de-
scribed in the literature that blur the line between statisti-
cal analysis and dasymetric mapping and can be viewed as
another means of population estimation, traditionally focus-
ing on the problem of small area estimation (e.g., Birkin and
Clarke, 1988; Wong, 1992; Bogaert, 2002), or as a type of
dasymetric refinement (e.g., Mrozinski and Cromley, 1999;
Leyk et al., 2013) (Fig. 1d). The difference compared to more
traditional approaches is that the weights are statistically de-
rived by regressing population counts or densities against
various types of predictive variables (Mennis, 2009), derived
from ancillary data layers such as density or length of streets
(Reibel and Bufalino, 2005), or remotely sensed data (Har-
vey, 2002; Wu et al., 2005).

More recently, an increasing number of hybrid approaches
have been described that explicitly combine the more tradi-
tional concept of dasymetric mapping with statistical ana-
lytical frameworks. These approaches often rely on machine
learning techniques or ensemble prediction that enable the
robust estimation of population weights and, in a subsequent
step, inform a dasymetric redistribution process (Nagle et
al., 2014; Stevens et al., 2015). For example, a statistical
model (e.g., a maximum-entropy approach or a random for-
est model) estimates a population density layer. These es-

timated population densities provide a weighting layer that
is then used to dasymetrically redistribute total population
counts within each source unit to its target grid cells. If there
exists a robust settlement layer, then the hybrid approach
would use the statistical weighting layer to dasymetrically
redistribute the total source zone population counts only to
target grid cells that are classified as settlements (Reed et
al., 2018). Such hybrid dasymetric approaches have shown
promising results when compared to other techniques for
producing gridded population maps (Sorichetta et al., 2015;
Reed et al., 2018).

3.2 Ancillary data

The products included in this comparative review are the
outcomes of different data integration approaches to pro-
duce gridded population distribution datasets based on dif-
ferent techniques of refinement, zonal statistics, reallocation
or inter- and extrapolation. Different ancillary data have been
used in slightly different ways to create different population
models. As mentioned, all ancillary data have in common
that they exhibit some kind of relationship to population that
can be exploited in population redistribution models to in-
crease the accuracy of population estimates. These relation-
ships may be of correlative nature, based on empiric rules
or even binary. While the literature on population modeling
and dasymetric mapping has described a variety of such an-
cillary variables, the data that can be used in national, re-
gional and global population grid production has to be avail-
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able consistently for large extents, and for different points
in time, thus limiting the choices for researchers and data
producers. One important class of ancillary data is that of ur-
ban land use area or human settlements detections. Figure 2
provides an overview of this type of ancillary data available
at different points in time including satellite images (Land-
sat, MODIS), land cover products and settlement layers (e.g.,
GHSL or the Global Urban Footprint, GUF+) in relation to
commonly available census data. This overview highlights
apparent temporal offsets between input population data and
some ancillary data. It also emphasizes the high temporal res-
olution of satellite data, which can have varying quality due
to cloud cover and other characteristics and provides the ba-
sis for the derivation of abundant ancillary variables includ-
ing land cover and settlement data.

Table 1 summarizes the input variables, including these
land use type and other ancillary data, used to create the dif-
ferent products (also available at https://www.popgrid.org/
compare-data, last access: 15 July 2019); as described ear-
lier, Table 2 provides additional information on the modeling
methods used.

3.3 Different methods and sources of uncertainty

Figure 3 illustrates, using a region in Kenya, how different
ancillary data layers, typically used for population redistri-
bution including roads, land cover, protected areas and to-
pography (Fig. 3b–e) affect the resulting population distri-
bution (Fig. 3f). Different methods described above will em-
ploy these variables in different ways and operate under vary-
ing assumptions, and they often result in different estimates.
Thus, there are expected relationships and trends that can be
observed for most population grids. For example, low road
density, rough topography and high elevations; the presence
of protected area; and nonurban land cover are commonly re-
lated to low population densities. However, Fig. 4 illustrates
remarkable differences between the population distributions
of the data products described in this review for a larger area
in Kenya, highlighting the importance of informing the user
about critical aspects and characteristics of the different data
layers. Note that in Fig. 4a population counts (not density)
are rendered per irregularly shaped level 5 census unit. In
Fig. 4c–h, population is rendered per grid cell. Note that the
grid cell size is not the same across the panels and is specific
to each data product. Within each panel, however, the grid
cells have the same extent and can be interpreted as popula-
tion densities.

It is important to acknowledge the error accompanying the
estimation results from such redistribution approaches. This
includes uncertainty associated with the original census, the
areal aggregation of both the input census data and the an-
cillary data products (Wu et al., 2005), and the model used
to estimate statistical relationships (Nagle et al., 2014; Sinha
et al., 2019). Recent research has increasingly stressed the
complexity of uncertainty in such applications as well as the

difficulty to carry out validation due to the lack of reference
data (Mennis and Hultgren, 2006; Zandbergen and Ignizio,
2010). Therefore, error assessments tend to appear mostly in
studies in data-rich settings.

The persistent challenges with modeling and validating
gridded population datasets especially in data-poor regions
have driven more recent initiatives that focus on modeling
gridded population from the ground up, relying on micro-
census data and geostatistical covariates in a statistical mod-
eling framework (Wardrop et al., 2018). Such techniques,
in the absence of reliable or recent census data, leverage
advances in computational and statistical frameworks along
with increased spatial fidelity of remotely sensed products
and advances in global positioning system (GPS)-enabled
field survey techniques to produce gridded population sur-
faces. This type of approach is considered complementary to
more traditional, census-enumeration-based efforts.

4 Current data products, characteristics and
availability

This section summarizes several global data products in-
cluding the Center for International Earth Science Informa-
tion Network’s (CIESIN) Gridded Population of the World
(GPWv4.11) and Global Rural-Urban Mapping Project
(GRUMPv1), the European Commission Joint Research
Centre (JRC) and CIESIN’s Global Human Settlement Pop-
ulation Layer (GHS-POP), Oak Ridge National Laboratory’s
LandScan; ESRI’s World Population Estimate (WPE), and
WorldPop’s WorldPop datasets. We also reference the His-
tory Database of the Global Environment (HYDE) as a grid-
ded data product representing a long-term historical context
(i.e., ∼ 12000 years). Depending on the estimation method
applied and ancillary data used, these different data prod-
ucts can be seen as unmodeled, slightly modeled and highly
modeled population grids. While the focus of this review
is on global population grids, we also discuss a number of
country and regional/continental grids, including Facebook
and CIESIN’s High Resolution Settlement Layer (HRSL),
JRC’s European GHS Population Grid and the U.S. Cen-
sus Bureau’s country grids (Demobase). Owing to space
constraints, we omit gridded population projections such as
those developed by Jones and O’Neill (2016). Similarities
and differences in these data products are detailed in Ta-
ble 2. Extended data documentation and visual comparison
tools (tables and map services) are available through the
POPGRID website (https://www.popgrid.org/, last access:
15 July 2019).

4.1 Global population data production efforts

Gridded Population of the World version 4 (GPW4) is a data
collection consisting of gridded data products on total popu-
lation counts and densities and other key demographic vari-
ables, globally at a nominal spatial resolution of 1km using

Earth Syst. Sci. Data, 11, 1385–1409, 2019 www.earth-syst-sci-data.net/11/1385/2019/

https://www.popgrid.org/compare-data
https://www.popgrid.org/compare-data
https://www.popgrid.org/


S. Leyk et al.: Gridded population data products and their fitness for use 1391

Figure 2. Identification of different ancillary data that inform spatial and temporal interpolation approaches to create gridded population
data across scales of interest. Temporal fidelity in the Landsat (30 m resolution; with varying proportions of cloud-free area) and MODIS
(250 m resolution) sensors is shown in relation to typical points in time for censuses alongside several derived ancillary data products such
as the European Space Agency (ESA) annual land cover data (300 m resolution) and the Global Human Settlement Layer (38 m resolution)
at various publication dates. The Global Urban Footprint (GUF+) exists for one point in time only. Also noted are OpenStreetMap data,
vector-based information that is increasingly explored as a possible ancillary data source, which can be acquired anytime and is potentially
useful for more contemporary time periods as a static variable; as it is continually evolving, its currency may deviate by region.

Table 1. Summary of input variables used in modeling gridded population globally.

Gridded Population Ancillary data layers
population
dataset

Roads Land Built Cities Night- Infrastructure Environmental Protected Water
cover structures or urban time datab areasa bodies

areas lights

GPW x a x
GRUMP x x x a x
LandScan x x x x x x x x x
GHS-POP x x
WPE x x x x x
WorldPop x x x x x x x x x x
HYDE 1950–2015 x x x

a Protected areas were not masked out, but national statistical offices often assign no data or 0 (zero) to protected areas. b Climate, topography, elevation.

the World Geodetic System (WGS84) as a geographic ref-
erence system (Doxsey-Whitfield et al., 2015). GPW4 in-
cludes estimates for the years 2000, 2005, 2010, 2015 and
2020 respectively. Additionally, GPW4 includes vector point
data representing the centroids of input census enumeration
units, as well as gridded data on land and water area esti-
mates, national identifiers and data quality metrics. GPW4
employs a uniform allocation approach to disaggregate pop-
ulation, which is based purely on the land area of a given
pixel (unmodeled; see Table 2). The mean input adminis-
trative area can be used as a data quality metric to provide
users with guidance as to the effective local resolution of
original input population data. Because the size and extent
of input census geographies is highly variable, within and

across countries, the scale at which GPW4 data should be
analyzed differs by region. For example, in the USA, where
census blocks are the primary input units, highly localized
analysis is appropriate, whereas the coarse input geographies
of Libya require aggregations to provincial scales for analy-
sis. Two variants of the population grids are available: those
based solely on inputs from the data supplier (typically na-
tional statistical offices) and national totals that match the to-
tal population estimate of the United Nations’ World Popula-
tion Prospects (2019). Detailed documentation and metadata
on nominal resolution and sources of input data are provided.
These data are freely accessible and downloadable at http:
//sedac.ciesin.columbia.edu/data/collection/gpw-v4 (last ac-
cess: 15 July 2019).
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Figure 3. A schematic illustration of refinement effects of ancillary data layers on census population data to create gridded population grids
at fine spatial resolution for a small study area near Nairobi, Kenya: (a) Kenya National Bureau of Statistics, Population and Housing Census
2009, level 5 population units (Center for Development and Environment, Kenyan Atlas Project) as input; (b) European Space Agency (ESA)
Climate Change Initiative (CCI) Land Cover 2015 (300 m resolution); (c) OpenStreetMap major roads (© OpenStreetMap contributors 2019;
distributed under a Creative Commons BY-SA License); basemap is the World Topographic Map (Esri, HERE, FAO, GeoBase); (d) World
Database of Protected Areas (March 2019 Release); basemap is the World Topographic Map (Esri, HERE, FAO, GeoBase); (e) Viewfinder
Panoramas 3 arcsec digital elevation model; (f) WorldPop 2014 population count (100 m resolution) as one exemplary population grid created.

The Global Rural-Urban Mapping Project v1 (GRUMP)
data collection builds on GPW, also in WGS84 and at a
nominal resolution of 1km, with the explicit aim of captur-
ing urban locations and populations and of distinguishing
those from surrounding rural areas. The collection consists
of global datasets normalized to the years 2000, 1995 and
1990 that indicate urban settlement points and grids of urban
extents, as well as population count and density grids that are
lightly modeled, taking the urban location information into
account (Balk et al., 2005; Balk, 2009). Using the stable-
city light data from the National Oceanic and Atmospheric
Administration (Elvidge et al., 1997), GRUMP was the first
global database to render urban areas spatially and con-
nect those locations with estimates of population. Although

newer nighttime light time-series data are now available (e.g.,
Elvidge et al., 2017), for a variety of reasons, updates to this
exact data product are not presently expected. This is partly
due to the fact that the time series does not extend as far back
as other possible settlement input layers and that more recent
night-lights can be better put to use as an independent proxy
for economic activity rather than urban location. The data
collection is freely available at https://sedac.ciesin.columbia.
edu/data/collection/grump-v1 (last access: 15 July 2019).

The Global Human Settlement Population Grid (GHS-
POP) depicts the distribution and density of the total pop-
ulation as the number of people per grid cell (250 m spa-
tial resolution) in world Mollweide equal-area projection.
Residential population estimates (counts) per smallest cen-
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Figure 4. Illustration of population input, exemplary ancillary data and different outcome data for a larger region around Nairobi, Kenya:
(a) Kenya National Bureau of Statistics, Population and Housing Census 2009, level 5 population units (Center for Development and Envi-
ronment, Kenyan Atlas Project); (b) World Topographic Map (Esri, HERE, FAO, GeoBase) with roads (OpenStreetMap; © OpenStreetMap
contributors 2019; distributed under a Creative Commons BY-SA License) and the World Database of Protected Areas (March 2019 Release);
(c) Gridded Population of the World version 4, revision 10, UN adjusted 2015 population count (1 km); (d) Global Human Settlement Layer
2015 population count (250 m); (e) High-Resolution Settlement Layer 2015 population count (30 m); (f) LandScan 2015 population count
(1 km); (g) Esri World Population Estimate 2016 population count (150 m); (h) WorldPop 2014 population count (100 m).

sus units available, used also by CIESIN GPWv4 for the
years of interest, are disaggregated to grid cells, directly
(linearly) proportional to the ratio of built-up areas within
a cell to the total cell surface (Freire et al., 2016, 2018).
Global mapping of built-up areas was performed through
the Global Human Settlement Layer (GHSL) project using
Landsat imagery collections for nominal epochs 1975, 1990,
2000 and 2014 (Pesaresi et al., 2013, 2016a, b). The GHSL
approach is grounded on the concept that buildings and their
agglomerations (i.e., settlements) are nowadays the main vis-
ible and direct manifestation of human presence (and activ-
ity) on the Earth’s surface. GHS-POP aims to constitute a

detailed and consistent time series of lightly modeled pop-
ulation distributions that is based on reproducible methods
for sustainable data production (Melchiorri et al., 2019) and
can be used in policy support in numerous domains (Ehrlich
et al., 2018b). These grids are created using open and free
input data and are also freely accessible and downloadable
at https://ghslsys.jrc.ec.europa.eu/ghs_pop.php (last access:
15 July 2019).

Oak Ridge National Laboratory’s LandScan Global rep-
resents an ambient (average day/night) population distribu-
tion in a 30 arcsec (∼ 1 km) resolution grid using the World
Geodetic System (WGS84) for spatial reference (Dobson et
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al., 2000). LandScan uses census and other geographic data,
as well as remote sensing imagery in a multivariate dasymet-
ric modeling framework to disaggregate census counts within
administrative boundaries (Dobson et al., 2003; Bhaduri et
al., 2002). The final product displays a combination of lo-
cally adaptive models tailored to match input geographies
and different environmental conditions in countries and re-
gions. The modeling approach, defined as “smart interpola-
tion”, uses subnational-level census counts for each country
and ancillary datasets, including land cover, roads, slope, ur-
ban areas, village locations, and high-resolution image clas-
sifications – all of which are key indicators of population
distributions. Based upon the spatial data and the socioeco-
nomic and cultural understanding of an area, cells are pref-
erentially weighted for the possible occurrence of population
during the course of a day. Within each country, the popula-
tion distribution model calculates a likelihood coefficient for
each cell and applies the coefficients to the census counts,
which are employed as control totals for respective areas.
The total population for that area is then allocated to each
cell proportionally to the calculated population coefficient to
compute counts of ambient or average day/night population.
LandScan Global is available for download free of charge to
the educational community at https://landscan.ornl.gov/ (last
access: 15 July 2019).

Esri’s World Population Estimate (WPE), initiated in 2014
and produced at the Environmental Systems Research In-
stitute (ESRI), includes population count and density grids
at a spatial resolution of 150 m, referenced through the
WGS84 geographic coordinate system (Frye et al., 2018).
WPE is based on the dasymetric redistribution of human
population data enumerated within the most detailed census
data available for each country to raster cells using a raster
model representing the footprint of human settlement (Frye
et al., 2018). The footprint of human settlement is produced
using various ancillary data layers. First, base scores are de-
rived through the combination of a 30 m resolution global
classified land cover dataset (MacDonald Dettwiler and As-
sociates, MDA, 2017), road intersection points (HERE 2019,
OpenStreetMap Foundation, OSMF, 2015) and populated
place points from GeoNames (GeoNames, 2013). The base
scores are augmented with texture scores derived from 15 m
resolution Landsat 8 panchromatic images using a rugos-
ity (i.e., terrain roughness) model (Jenness, 2004). The base
scores are used to allocate population to WPE cells to cre-
ate gridded representations of estimates of population counts,
population density (number of persons per square kilome-
ter), the likelihood of settlement and confidence scores.
WPE is the only commercial product described, avail-
able through https://www.arcgis.com/home/item.html?id=
92d3005feb84428a8f85160f2451ec63 (last access: 15 July
2019).

The WorldPop program produces a variety of demo-
graphic gridded data products at the global and country
scales (Tatem, 2017), including population counts, within

3 arcsec grid cells (∼ 100 m at the Equator) in the geographic
projection WGS84 (Stevens et al., 2015). Initiated in Octo-
ber 2013, the WorldPop project replaces and merges the re-
gional AfriPop (Linard and Tatem, 2012), AsiaPop (Gaughan
et al., 2013) and AmeriPop (Sorichetta et al., 2015) pop-
ulation mapping projects. The main method for producing
WorldPop products is a weighted dasymetric approach that
relies on a random forest model (Breiman, 2001) to produce
a predictive weighting layer for dasymetrically redistributing
population counts into gridded cells (Stevens et al., 2015).
Individual country outputs from the WorldPop project pro-
vide an open access, transparently documented archive of
spatial demographic datasets for many regions in the world
including Central and South America, Africa and Asia to
support development, disaster response and health applica-
tions (Gaughan et al., 2013; Stevens et al., 2015; Sorichetta
et al., 2015, 2016). In addition, the WorldPop program pro-
duces a standardized, temporally and spatially consistent set
of gridded products at the global scale. These freely avail-
able datasets include the input population data and covariates
used in model prediction (Lloyd et al., 2017), annual gridded
population count datasets also structured by 36 age and sex
classes from 2000 to 2020, and grid cell area estimates that
can be used to derive gridded population density datasets.
All data can be downloaded from https://www.worldpop.org/
project/list (last access: 15 July 2019).

The History Database of the Global Environment (HYDE)
includes maps of historical estimates of total, urban and ru-
ral population, population density and built-up area at a spa-
tial resolution of 5 min longitude/latitude, provided in dec-
imal degrees. HYDE covers a time period from 10 000 be-
fore Common Era (BCE) to 2015 Common Era (CE) and
is described as an internally consistent combination of his-
torical population estimates and allocation algorithms with
time-dependent weight maps for land use (Klein Goldewijk
et al., 2010, 2011, 2017). For the period prior to 1950, his-
torical input population estimates were taken from the gen-
eral literature and supplemented with the subnational pop-
ulation numbers and country-specific sources to build time
series for each province or state of every country. For the
period after 1950, the underlying input data are based on
1950–2015 population estimates from the United Nations
World Population Prospects (2008 revision) as well as land
cover and land use data products. All data can be down-
loaded from https://doi.org/10.17026/dans-25g-gez3 (Klein
Goldewijk, 2017).

4.2 National and regional/continental population data
production efforts

It is imperative for a review of existing global population
data products to also reference production efforts at national,
regional or continental scales that often make use of more
detailed input data but are based on similar methodologi-
cal frameworks. Such country- and regional-level products
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are often created for specific purposes, which may influ-
ence the decision rules applied for their creation. Often these
data products are based on more up-to-date ancillary and in-
put population data and thus may provide pointers for fu-
ture global population data creation once those ancillary data
could become available worldwide.

For example, Facebook Connectivity Lab and CIESIN’s
High Resolution Settlement Layer (HRSL) provide estimates
of human population distribution in 33 countries in Central
and South America, Africa and Southeast Asia, at a reso-
lution of 1 arcsec (approximately 30 m), in the geographic
projection WGS84 for the year 2015. Machine learning tech-
niques are used to identify potentially populated areas (set-
tlement) using very high resolution satellite imagery. Pro-
portional allocation is then applied to redistribute population
from recent census data onto grid cells identified as settle-
ment extent (Tiecke, 2016; Tiecke et al., 2017). This data
production effort was driven mostly by Facebook’s interest in
locating people in remote areas of developing countries such
as Burkina Faso, Ghana, Haiti and Sri Lanka, who may be
in need of internet access, and is available from https://www.
ciesin.columbia.edu/data/hrsl/ (last access: 15 July 2019).

Developed by the European Commission for the pur-
pose of producing the most detailed possible population
grid for policy analysis and support, the European Global
Human Settlement (GHS) population grid represents the
distribution and density of total residential population, ex-
pressed as the number of people per grid cell (100 m spa-
tial resolution) in equal-area projection (LAEA ETRS89)
for 43 countries and territories in 2011. Intelligent dasy-
metric mapping (Mennis and Hultgren, 2006) was employed
in order to disaggregate best-available census data for each
country (vector grids or census tracts) to built-up areas
as mapped by the European Settlement Map 2016 (Ferri
et al., 2014; Florczyk et al., 2016) and weighted by en-
hanced land use/cover data from a refined Corine Land
Cover map where available (Freire and Halkia, 2014). For
eight countries, population grids were originally modeled at
10 m spatial resolution and then aggregated to 100 m grid
cells. This data product is freely accessible and download-
able at http://data.jrc.ec.europa.eu/dataset/jrc-ghsl-ghs_pop_
eurostat_europe_r2016a (last access: 15 July 2019).

The U.S. Census Bureau has developed gridded Demobase
population maps at 100 m resolution, in the geographic pro-
jection WGS84, for selected countries including Haiti, Pak-
istan and Rwanda (e.g., Azar et al., 2010, 2013), as well as
maps of subnational population by age and sex within ad-
ministrative areas for various points in time since 1998. The
Census Bureau has invested in efforts to provide data on pop-
ulation patterns by administrative areas and grid cells for
various regions with a focus on improving the availability
of detailed population maps in regions likely in need of hu-
manitarian relief and disaster assistance from external part-
ners (U.S. Census Bureau, 2018). Data inputs include census
data from every country and territory that conducts a census;

demographic surveys; maps of administrative boundaries
from national and international mapping agencies; high- and
medium-resolution satellite imagery; and a range of ancil-
lary layers such as land cover, road networks and elevation.
Both Demobase gridded data and administrative-area-based
subnational datasets are freely accessible and download-
able via links at https://www.census.gov/programs-surveys/
international-programs/about/global-mapping.html (last ac-
cess: 15 July 2019).

5 Different populations or different data? A
fitness-for-use perspective

The process of creating gridded population products redis-
tributes population estimates from census or administrative
areas to grid cells, conditional on where human populations
and settlements may be located. The nature, quality and ac-
curacy of the input population data, the characteristics of the
output gridded population dataset, the properties of the an-
cillary data used, and the implications of the methodological
approach applied for population allocation and redistribution
are all important determinants of spatial data quality in gen-
eral (FGDC, 1998; Guptill and Morrison, 2013) but also help
to shed light on the relative data quality of each of the popu-
lation grids described in this review. While data quality and
its reporting in standardized metadata has been the focus of
much research in the last decades, the discussion of relative
quality or fitness for use of spatial data has received less at-
tention (see Devillers et al., 2007, 2010; Ivánová et al., 2013).
Since the described population grids show fundamental dif-
ferences, the question of whether a data product is fit for a
given purpose is of high relevance. Thus, in this section, we
discuss several determinants (not an exhaustive list) that aid
the data user in the assessment of the data product’s fitness
for use relative to the target application. We briefly discuss
data-related aspects including scale, currency and semantics,
as well as modeling and processing-related implications for
uncertainty. We address them separately, but the reader may
be reminded that all those relative quality aspects have to
be understood to be interrelated as one can affect all others.
We will also address the problem of validation of large-scale
population grids.

5.1 Data aspects of relative quality

The accuracy of the input census/population data and ancil-
lary data includes thematic, spatial and temporal accuracies,
which contribute to the level of uncertainty of the final data
product. For this reason, the user needs to consider and un-
derstand what kind of data are input to a certain data produc-
tion process. For census data, the completeness of coverage,
the margin of error (if sampled), the time period the census is
taken and the positional accuracy of the boundaries are mea-
sures that can be used but might not be always known, and
the data need to be used with caution. This kind of knowl-
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edge is important to reflect when using population grids in
a given region (e.g., Tatem, 2014). With regard to the ancil-
lary data, needless to say, the quality of the final population
grid depends on the quality of the ancillary data used for re-
distributing population counts. Apart from the existence and
strength of the assumed relationship between population and
ancillary variables (Nieves et al., 2017), the accuracy of these
spatial layers themselves is critical for the accuracy of grid-
ded population estimates. For example, the classification ac-
curacy of built-up or developed land layers that are used to re-
distribute census counts to different regions tends to be lower
in rural than in urban settings (Wickham et al., 2013; Leyk
et al., 2014, 2018; Uhl et al., 2018) but can also vary across
larger regions and countries. The quality of remotely sensed
ancillary data also depends heavily on the characteristics of
the instrument (optical daytime, optical nighttime or radar)
and the processing algorithm (e.g., Small et al., 2005; Potere
et al., 2009; Pesaresi et al., 2016b; Esch et al., 2017). Such
differences propagate through to strongly influence the accu-
racy of the final population data product and may cause over-
or underestimations in different subregions. Knowledge of
such issues would be critical for the data user if population
estimates in different regions are compared with each other.
Due to the nature of the input and ancillary data, these accu-
racies translate into aspects of scale, currency and semantics
critical for evaluating the fitness for use of the final popula-
tion grids as discussed below.

Scale. Since input data are typically enumerated counts, is-
sues due to spatial aggregation including the MAUP (Open-
shaw, 1983), as the geographical manifestation of the eco-
logical fallacy (Piantadosi et al., 1988; Waller and Gotway,
2004), are one of the main sources of the unknown. Differ-
ences in granularity of the input (census) data across differ-
ent regions or countries must be taken into account since the
same population redistribution model may perform very dif-
ferently under different circumstances due to possible scale
effects. In using the final population grids, the grid cell, de-
fined by the spatial resolution (that is, cell size; Table 2),
would often be assumed to define the analytical scale (Mon-
tello, 2001; Cao and Lam, 1997). The user would often at-
tempt to model a certain process or phenomenon of interest,
but often there is a mismatch between this operational scale
(e.g., Montello, 2001; Maclaurin et al., 2015) and the ana-
lytical scale. However, it is imperative for the user to under-
stand that due to the difference between input population data
(i.e., source unit) and output grid cell (i.e., target unit) gran-
ularity this assumption may be fundamentally flawed and re-
sult in either oversampling or generalization. For example, if
the analysis is intended to be conducted at the neighborhood
scale, population estimates provided in grid cells of 150 or
250 m appear to represent meaningful target units. If these
input data were at the census block or tract level, the grid cell
size would represent an appropriate proxy and can be used
as a valid analytical unit at the intended target scale. If, how-
ever, the input data originated from large administrative units

(e.g., district- or county-level source units) there would be a
significant offset between input and output. In such cases,
the user would face a higher risk of using oversampled pop-
ulation estimates that might result in higher degrees of local
inaccuracy.

Creating equivalencies over time of finely resolved cen-
sus units is challenging even in vector format; this problem
is not necessarily abated when transforming vector data to
grids. Differences in embeddedness of the population grid
cells within census boundaries (when the census units are in-
trinsically larger than the average grid cell size) also have
implications for subsequent analysis using, e.g., multilevel
models over large areas and can become even more prob-
lematic if the census boundary–grid cell relationship changes
over time, thus impeding the creation of reliable popula-
tion trajectories of place. To complicate matters, if ancillary
data are used to redistribute population (e.g., to built-up por-
tions of the source unit) based on existing relationships, such
scale-related problems may be mitigated to some degree. In
addition, variation in how a model is trained or the units se-
lected to build the estimation model will influence the final
gridded distribution (Sinha et al., 2019). For example, if cen-
sus data from one region or country are very coarse, a model
built based on finer-resolution data from a neighboring re-
gion and then applied to the region of interest can be more
accurate (Gaughan et al., 2015). Thus, scale effects are in-
herent to each of the described population grids at different
degrees and represent a geographically varying characteristic
depending on the granularity of the input data, the strength of
the associations between population and ancillary data, and
the resolution of the output data. These effects need to be
interpreted in the context of the target scale of the intended
analysis, and consideration should be given to the type of
scaling needed to produce a given grid. For the interested
reader, Ge et al. (2019) provides a comprehensive review on
scaling considerations when working with geospatial Earth
science data.

The currency of the data represents another important
issue. In a few instances, underlying census data are old
(e.g., in Haiti) or the period between censuses is more than
10 years. While some of the ancillary data are more or less
constant over the near term (e.g., water bodies and permanent
ice), there may also be temporal mismatches between popu-
lation data and any of the intrinsically time-varying ancillary
data layers (Fig. 2). For example, it may be unknown whether
a given built-up land grid cell has been developed at the time
the census has been taken. Such temporal offsets may be crit-
ical if the assumption for the intended application necessi-
tates a high degree of temporal agreement (currency). This
form of uncertainty is difficult to handle and can be further
complicated by differences across regions and countries. In
response to this, few efforts (e.g., WorldPop and GHS-POP)
ensure the use of temporally implicit or invariant ancillary
data in the modeling process (Gaughan et al., 2016) (Table 1).
However, even under those conditions, there might still be
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underlying issues for projecting forward/backward from cen-
sus data for a target year of interest. The user is well advised
to understand the gridded population estimates as approxi-
mations over a period of time and avoid flawed assumptions
of high currency in a given analysis.

Semantics. As mentioned before, what the population
modeled represents can be very different among data prod-
ucts. This meaning can even be different within one product
if, e.g., the census input data account for different population
concepts or population groups in different regions or coun-
tries. For example, the population estimate might refer to de
jure (or legal) populations vs. de facto (or present) popula-
tions, and using the one over the other product would possi-
bly result in dramatically different results. The user has to be
aware that data on resident populations as provided by cen-
suses are themselves a convention, whose distribution never
occurs at any moment in time (de jure census population)
or if it does occur (de facto, location at the time of the cen-
sus) that distribution may not be representative of a different
situation or in the medium/long term (i.e., a year): the con-
cept of usual residence. Most of the global population data
products use a nighttime/usual residence (de jure) concept or
mostly rely on underlying data that use a de jure concept,
with LandScan being the notable exception. Thus, the user is
well advised to be aware of the meaning of the populations
modeled in the population grid in question to avoid such mis-
interpretations, as indicated in Table 2. The aspects of scale
mismatch described above can further add to semantic differ-
ences since, due to such aggregation effects, different popu-
lations may be modeled. Thus, these implications have to be
understood by the user, spatially and semantically, and cau-
tion is advised when interpreting analytical results.

5.2 Processing- and model-related implications of
uncertainty

Regardless of the approach of choice employed for data pro-
duction, all efforts described in this review do carry out some
form of data conversion (e.g., vector to raster) and data inte-
gration (reallocation or resampling). The different population
grids described are based on varying levels of modeling in-
tensity (unmodeled, lightly and highly modeled) as indicated
in Table 2. However, any such data processing step will prop-
agate uncertainty in some way and have consequences for
the quality of the outcome data and the subsequent analy-
ses, depending on the input data quality as described above.
For example, if large census units (e.g., counties or districts)
in vector format are converted to grid cells (rasterization)
of fine spatial resolution (e.g., 150 m), while there is a clear
scale effect to be addressed (see above), the resulting popu-
lation estimates may differ dramatically for different redistri-
bution models applied that may or may not use ancillary data.
The data user needs to be aware that existing uncertainty is
not eliminated by applying certain models or integrating dif-
ferent data sources. However, through the process of data

integration we may be able to improve the accuracy based
on spatial refinement strategies such as dasymetric modeling
(Mennis, 2009).

GPW, GHS-POP and HYDE do not employ statistical
methods to produce their grids, and thus traditional metrics
of uncertainty are not available. Because fine resolution in-
puts reduce errors of aggregation, GPW reports the number
of input units per country used in the gridding process. Nev-
ertheless, errors may persist in countries with highly variable
input units. For example, Sahelian countries have finely re-
solved units for densely populated areas but very coarse units
for sparsely populated regions.

The specific model applied to reallocate population counts
and densities, which can be empirical or statistical, will al-
ways have some error. This error relates to the estimated rela-
tionship between population and ancillary variable and not to
the final population estimate which also may incorporate un-
certainty due to error in the input population data or ancillary
data. When the modeling process is statistical or hybrid such
as in the case of the WorldPop, LandScan and WPE, esti-
mates of such model errors (e.g., standard error of regression
coefficients, prediction error) can be derived as a by-product
of the modeling process. To fully understand the quality of
a population grid, the error of the applied model needs to be
evaluated. Highly accurate ancillary data are not useful if the
relationship to population is weak or the model applied inap-
propriate, and thus the model predictions are unreliable (e.g.,
low R squared, or deviance explained). Such prediction er-
rors are often assessed in comparison to alternative models
but are hard to quantify in the absence of validation data. To
complicate matters, the same model might perform very dif-
ferently in different geographies or under different environ-
mental conditions, an effect known as spatial nonstationarity
or spatial variation of the target relationships (Fotheringham
et al., 1996). Such variations will further affect the model
predictions if left unaccounted for.

5.3 Validation challenges

Validation of population data has always been a challenge,
simply because validation data at fine resolutions are rarely
available and, even when available, may exist at different
time periods or confidentiality rules may limit their use in
order to not expose individual- and household-level informa-
tion. Access to such confidential data is only possible with
special permission or sworn status and, even then, often the
demographic data are only a sample of the whole population.
These challenges can be very different between countries,
and thus a validation that may be possible in one country
does not necessarily translate to another location. For exam-
ple, Tiecke et al. (2017) compare the locations of the popu-
lation grid to the GPS coordinates of the nationally represen-
tative sample of almost 12 000 households interviewed for a
survey in Malawi. While a true validation of the gridded out-
put remains a challenge, it is possible to internally test the

Earth Syst. Sci. Data, 11, 1385–1409, 2019 www.earth-syst-sci-data.net/11/1385/2019/



S. Leyk et al.: Gridded population data products and their fitness for use 1399

accuracy of the modeling approaches (Gaughan et al., 2015;
Sorichetta et al., 2015; Reed et al., 2018). Such an assess-
ment can be done when different levels of census input data
are available for use in a model. The approach leverages the
coarser level data in different modeling approaches and then
compares the gridded outputs to the finer level census data
to determine how well and plausibly populations were dis-
tributed.

Validating ancillary data may have its own challenges.
However, the existence of new, more detailed reference data
in some regions (e.g., parcel data, crowdsourcing data) has
helped to make progress in evaluating land cover data and
built-up land layers, which is key to most of the described
population grids (See et al., 2015; Leyk et al., 2018; Leyk
and Uhl, 2018). In general, depending on the level of land de-
velopment and land use patterns in the region of interest, dif-
ferent products may serve the intended purpose differently.

6 Data availability

The above described data products and their characteristics
including the underlying population concept, method, reso-
lution, points in time, the source for national-level popula-
tion statistics used and reference links to access the data can
be found in Table 2 and in Table 3. All of these population
grids are open access except two that have some restrictions.
The different data producers host the data in different ways,
typically using internal servers and data repositories. Sum-
maries and links to the various data repositories can be found
at https://www.popgrid.org/, facilitating access to, documen-
tation and comparison of different data products. As men-
tioned before, the user can also find visual comparison tools
(outputs as tables and through map services) that provide ef-
fective ways to perform visual analytics and identify differ-
ences in patterns of population distributions exhibited by the
different data products.

7 Fit for use or not fit? Concluding remarks and
future work

The different critical elements described above all have some
impact on the fitness for use as a measure of relative data
quality. Despite the importance of data quality, it does not
receive the attention it deserves, in part because compara-
tive measures may be difficult to conceive, derive or quan-
tify. Furthermore, such assessment also importantly depends
on the application of interest. The different aspects above
have to be seen in context and considered interrelated. Dif-
ferent analytical and data processing steps such as conver-
sions or data integration do not cause isolated uncertainties,
but through all those steps uncertainty can be propagated and
thus becomes difficult to control and account for.

Whether or not data are fit for an intended use is not based
on standardized measures nor is it well understood as to what

the concept of fitness for use actually entails. Often it is at
the discretion of the data user to decide whether the use of
a given data product is appropriate or not, particularly in the
age of open public data and open science. Based on the above
discussion, there are a few guidelines that, in general, can
help a user make informed decisions related to the fitness of
a given population data product for their intended use:

1. How important is spatial refinement of the population
grid to be used? In the last 20 years, considerable atten-
tion has been paid to the spatial refinement of gridded
population estimates. Some applications such as estima-
tion of populations at risk of seaward natural hazards
benefit substantially from these improvements. Other
applications such as some climate scenario modeling do
not require such finely resolved data as information on
the general spatial distribution of population at moder-
ate resolution would be sufficient.

2. Does the analysis focus on urban populations? Closely
related to the above concern, if the aim of the analysis is
to examine urban population distribution as opposed to
rural population, one would be better off using a dataset
for which information on human settlements or urban
extents (e.g., in GHS-POP and GRUMP) has been used
in the modeling. Urban land tends to be concentrated
and can be clearly distinguished from the surrounding
areas in remote sensing images, and thus settlement data
products (or other measures of urban extent) are effec-
tive in spatially refining population data along an urban
gradient that will most likely improve the spatial preci-
sion of resulting estimates (though there is always the
possibility that they will overconcentrate population in
built-up locations). In contrast, data products that do not
include such refinements tend to underestimate urban
population. Data with extremely high resolution may
mitigate such effects even if no settlement data were in-
volved in the data production.

3. What is the target population for the question at hand?
Questions aimed at understanding long-term population
change are likely to be well served by the use of popu-
lation grids that represent nighttime, residential popula-
tion. In other instances, however, for example on emer-
gency response, one may need to know where popula-
tions are likely to be during the daytime or rely on an
ambient population concept and thus would be better
served by data products that incorporate that concept in
the modeling process.

4. Is the population grid being used to model other out-
comes? If so, and if that outcome may be one of the an-
cillary variables (or one closely linked to it) used in the
production of the population grid, one needs to select
a population grid that is not endogenous to the ques-
tion at hand. For example, if the goal of the analysis is
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Table 3. Attribution table. Gridded population data collections described in this review article, years covered, digital object identifiers and
reference links. This review covers sources and versions available as of May 2019.

Data collection Year(s) Population Digital object identifier Reference link
themes (DOI)

Gridded Population 2000; 2005; Persons https://doi.org/10.7927/H4JW8BX5 https://sedac.ciesin.columbia.edu/data/
(CIESIN, 2018a)

of the World 2010; 2015; UN WPP-adj. https://doi.org/10.7927/H4PN93PB collection/gpw-v4
(CIESIN, 2018b)

(GPWv4.11) 2020 Pop. density https://doi.org/10.7927/H49C6VHW
(CIESIN, 2018c)

UN WPP-adj. https://doi.org/10.7927/H4F47M65
(CIESIN, 2018d)

Global Rural-Urban 1990; 1995; Persons https://doi.org/10.7927/H4VT1Q1H https://sedac.ciesin.columbia.edu/data/
Mapping (CIESIN et al., 2011a)

Project (GRUMPv1) 2000 Pop. density https://doi.org/10.7927/H4R20Z93 collection/grump-v1
(CIESIN et al., 2011b)

LandScan Global annual: Persons NA; data download at https://landscan.ornl.gov/
Population Database 2000–2016 https://landscan.ornl.gov/landscan-datasets
(LandScan Global) (last access: 20 May 2019)

WorldPop 2000–2020 Persons https://doi.org/10.5258/SOTON/WP00645 https://www.worldpop.org/
(WorldPop, 2018)

Global Human 1975; 1990; Persons https://data.jrc.ec.europa.eu/dataset/ https://ghsl.jrc.ec.europa.eu/ghs_pop.php
Settlement Layer 2000; 2015 jrc-ghsl-ghs_pop_gpw4_globe_r2015a
– Population (last access: 20 May 2019)
(GHS-POP)

World Population 2013 Persons https://doi.org/10.13140/RG.2.2.18213.14565 https://sites.google.com/ciesin.
(Nordstrand and Frye, 2014)

Estimate (WPE)

2015

Persons https://doi.org/10.13140/RG.2.2.16160.79367 columbia.edu/popgrid/find-data/esri
(Frye and Nordstrand, 2016a)

Pop. density https://doi.org/10.13140/RG.2.2.14857.70248
(Frye and Nordstrand, 2016b)

2016

Persons https://doi.org/10.13140/RG.2.2.12996.48007
(Frye and Gilbert, 2018a)

Pop. density https://doi.org/10.13140/RG.2.2.21568.58885
(Frye and Gilbert, 2018b)

History Database of the 10 000 BC Persons https://doi.org/10.17026/dans-25g-gez3 https://themasites.pbl.nl/tridion/en/
Global Environment to 2015 (Klein Goldewijk, 2017) themasites/hyde/download/index-2.html
(HYDE) Population
Grids v3.2

High Resolution
2015 Persons

NA; data download at
https://ciesin.columbia.edu/data/hrsl/

Settlement Layer https://ciesin.columbia.edu/data/hrsl/
(HRSL) (last access: 20 May 2019)

European GHS
Persons

https://data.europa.eu/89h/jrc-ghsl- https://data.jrc.ec.europa.eu/dataset/
Population Grid 2011 ghs_pop_eurostat_europe_r2016a jrc-ghsl-ghs_pop_eurostat_europe_r2016a
(GHS-POP-EUROSTAT) (last access: 20 May 2019)

Gridded Population 1998 to Persons NA; data download at https://www.census.gov/geographies/
Mapping (Demobase) present https://www.census.gov/geographies/mapping- mapping-files/time-series/demo/

files/time-series/demo/international- international-programs/demobase.html
programs/demobase.html (last access: 20 May 2019)

NA: not available.
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to estimate changes in built-up area using population as
one of the explanatory variables, then one must not use
GHS-POP (which uses built-up area). This necessitates
that users become familiar with the ancillary data used
in the production of the population grids and even those
used, perhaps, in training datasets but not actually the
modeling.

5. Analyzing change over time? If one’s goal is to examine
change over time in population distributions, one of the
data products representing multiple years is most suit-
able. However, there may be differences in how differ-
ent grids have been generated for specific years. In order
to analyze change in population distributions, ideally
a data product built from data layers representing the
respective time period would be preferred. Data which
represent only one time period and apply, say, national-
level growth rates to derive data distributions for earlier
time periods would be less amenable.

6. How have these datasets been used previously? Some
of the data providers make available citation lists of
publications from the providers’ team or the broader
user community that may provide some guidance for
the novice user. For example, GPW, WorldPop, Land-
Scan and others provide such lists, which are extremely
useful as a collection of common applications in which
those data have been used. Based on such lists, the user
can explore whether prior use of the data products ap-
pears to be appropriate with regard to target applications
and how these scenarios compare to their own study.
These datasets are used in combination with other spa-
tially rendered data, whether those data are thematically
environmental, health-related or social in nature, lead-
ing to a wide array of usages. However, they are typi-
cally not combined with other data that are limited in
their spatial specificity (such as historic census tables or
national-level survey data).

This review is an attempt to shed light on underlying data
considerations to raise the awareness of relative data quality
concerns related to the described population data products.
The data user community is encouraged to consider the de-
scribed quality aspects and metadata carefully, before mak-
ing decisions about any given data product’s fitness for the
target application. This can include the full assessment of the
above aspects, the use of metadata and sensitivity analysis
including running an analysis at different spatial resolutions
or the comparison of analytical results using different pop-
ulation grids (see, e.g., Mondal and Tatem, 2012; Tatem et
al., 2011) to understand and quantify the sensitivity of the
study results.

There has been significant progress in the spatial rendering
of population and related characteristics in the past 20 years,
but persistent challenges remain. We depend on existing pop-
ulation grids that are created using ancillary data to pro-
vide hints for where people live or spend time. In an ideal
world, the research community would also have access to
detailed building footprint and height data for all structures,
and know whether these structures are residential or commer-
cial, if indeed they are occupied at all, to pair with population
data. Future work will help to close these gaps by employing
new high-resolution satellite technology as well as more re-
liable population surveys. This includes new and improved
nighttime lights products (e.g., Visible Infrared Imaging Ra-
diometer Suite, VIIRS, with respect to DMSP-OLS Night-
time Lights) that have been already successfully tested in ur-
ban mapping applications (Elvidge et al., 2017), as well as
settlement data production (GHSL, GUF, as well as at Digital
Globe, etc.) to further refine the available population grids.

It is important to note that since the first global population
grid, the emphasis has been on producing grids of popula-
tion counts and density rather than any other population at-
tribute. While this emphasis has its obvious roots in the im-
portance of population as a denominator, it also arises from
the simple constraint that population is the most consistently
measured variable across place and time (though not without
historical exception). This community should accept it as a
challenge to expand into other population attributes in the
near future. Members of the POPGRID data collaborative
are investing work in a number of emerging areas, includ-
ing future population projections (Jones and O’Neill, 2016),
population projections incorporating climate change impacts
(Rigaud et al., 2018), near-real-time population modeling
(Bharti et al., 2015), mobility mapping, population dynamics
(Deville et al., 2014), increased temporal resolution (Batista
e Silva et al., 2018) and working directly with national statis-
tical offices to improve the spatial accuracy of census prod-
ucts (http://www.grid3.org/). These efforts often make use of
novel data streams such as cell phone call detail records or
social media data, or best practices in data collection using
mobile devices. Finally, future work will be dedicated to im-
proving the accuracy of population estimates, particularly in
rural regions, where the reliability of existing data products
is limited to date.
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Appendix A: Glossary of key terms

Population grid A spatial representation of either population counts or population density within a number
of quadrilateral grid cells, covering a given extent on the Earth surface.

Spatial resolution The size of a grid cell used to represent the cell value (also called granularity).
Analytical scale The spatial scale (or level of aggregation) at which a given spatial

analysis will be performed; related to spatial resolution.
Precision The degree of exactness of a measurement.
Accuracy Refers to how close the measurements are to the true values.
Temporal resolution The amount of time between two representations of the data covering the same area.

For remotely sensed data, it depends on the time a sensor revisits and
acquires data for the exact same location.

Currency The temporal proximity of the data of interest to a given point in time.
De facto population The number of persons who are physically present in a geographical area

at the time of the enumeration.
De jure population The number of persons attributed to a geographical area based on their legal

or usual place of residence – regardless of whether they are present at the time of the enumeration.
Areal interpolation The process of making estimates for a set of spatial units based on another

incongruent set of spatial units that can be partially or entirely overlapping.
Dasymetric mapping The process of spatially redistributing quantities through areal interpolation

using ancillary data associated with the variable of interest.
Fitness for use A concept to assess the characteristics and the level of relative quality/accuracy

of a given dataset in relation to a given purpose or to fulfill the user needs.
Modifiable areal unit A source of statistical bias due to arbitrary spatial aggregation of data potentially resulting in
problem (MAUP) nonrepresentative results if the process of interest operates at different scales.
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