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Context 

Both census-based and estimated population and demographic data are typically made 
available either in tabular form (e.g., UNDESA, 2109) or associated to irregularly-shaped 
spatial units representing administrative level boundaries ranging from states/provinces to 
enumeration areas (US Census Bureau, 2019). 

While such data are still useful for reporting and statistical purposes, having accurate 
population and demographic data at the finest possible spatial level are crucial for other 
applications such as: assessing the number of people potentially affected by natural and man-
made disasters, organizing relief operations, delivering health and educational services, 
organizing elections, planning vaccination campaigns and delivering bed nets, estimating 
infectious disease risks, burdens, and dynamics, as well as measuring and monitoring 
Sustainable Development Goals. Indeed, aggregated population and demographic data, 
particularly in low-density and relatively larger administrative units, do not accurately 
represent the true spatial distribution of both the total population and specific demographic 
groups of interest. Furthermore, aggregated data referring to political or administrative units 
often presents analytical challenges when used to investigate the reciprocal relationship 
between population distribution and environmental factors, such as climate and land use 
change, deforestation, urbanization, and pollution, which may not be representative at the 
same “arbitrary” spatial level at which the population and demographic data are aggregated. 

Nevertheless, for the majority of low- and middle-income countries, either characterized by 
rapid development and urbanization or most severely and disproportionately affected by 
both natural disaster and infectious disease morbidity, accurate population and demographic 
data at the finest spatial level are often either difficult to obtain or simply unavailable. 

For these reasons, since the early-1990s, there has been an increasing effort to produce 
consistent and comparable spatially-explicit population and demographic datasets by using a 
range of approaches, assumptions, and input data to disaggregate administrative unit-based 
figures to a regular grid of fixed spatial resolution (Leyk et al., 2019). Such gridded datasets, 
also enabling flexible integration with other types of geospatial data (including Remote 
Sensing-based human settlement datasets and natural hazard footprints), are nowadays 
largely and increasingly used for analysis and modelling in a growing number of fields. Some 
examples of how they are used to support applications in data poor settings are presented in 
the next section, along with some important considerations about their fitness for use. 
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“Real-World” Applications 

As highlighted in Balk et al. (2006), “the fewer the assumptions and inputs that are used in 
the construction of gridded population datasets, the fewer the restrictions that have to be 
imposed on the appropriateness of use in a wide variety of applications”. However, as 
mentioned by Leyk et al. (2019) in their background paper for this cyberseminar, it is 
extremely important to consider the “Fitness for use” of a given gridded population dataset 
for an intended purpose. Thus, especially for specific analyses in which the accuracy of 
population distribution is critical, the use of highly modeled gridded population and 
demographic datasets, obtained using ancillary dataset, should be preferred.  

For example, in the context of spatial modeling of infectious and non-communicable disease 
distributions and dynamics, as much accurate as possible population distribution data are 
required for correctly enumerating disease burdens and populations at risk. Furthermore, 
with substantial focus and investments placed on (i) better estimating the prevalence (Bhatt 
et al., 2015), endemicity (Battle et al., 2019) and suitability (Messina et al., 2016) of multiple 
diseases at the grid cell level, it is key to use reliable denominators for measuring the health 
metrics associated to them – especially in countries where spatially detailed and up-to-date 
census data are not available. In this framework, highly modeled WorldPop gridded 
population datasets are used to provide the basis for health metrics supporting, among 
others, the IHME Global Burden of Disease, the Malaria Atlas Project, and the Trachoma Atlas. 

Alegana et al. (2015) demonstrate also that, in absence of reliable, up-to date and/or detailed 
census-based data, accurate spatially-explicit age-structure datasets can be produced by 
integrating geolocated household survey data with geospatial covariates (in this case with 
uncertainty quantification). The estimated proportions of the population under 5 years are 
used to guide polio vaccination allocations, plan vaccinator routes and logistics, and estimate 
coverage rates in Northern Nigeria. Furthermore, the corresponding gridded under-5 dataset 
forms part of the Nigerian Vaccination Tracking System through its mapping tool. 

Similarly, in natural and man-made disaster situations there is a need to estimate, as much 
accurately as possible, the number of potentially affected people to determine both the scale 
of the event and relief needed. Considering that it is highly unlikely that such events are going 
to impact areas aligned with (coarse) census units, in countries and areas where detailed 
population data are not available, UNITAR-UNOSAT regularly use WorldPop gridded 
population and demographic datasets to assess the number of people potentially affected by 
natural disasters, as well as their characteristics such as age and sex (examples include, among 
others, the 2019 Peru Earthquake and Tropical Cyclone Idai). UNOCHA also uses WorldPop 
gridded datasets in the Libya Humanitarian Needs Overviews Report to estimate the 
percentage of population in need within each province in 2015. 

Finally, Thomson et al. (2017) describe how highly modelled gridded population datasets 
might be used as a sample frame to select primary sampling units for complex household 
surveys in countries were data are outdated or inaccurate. In particular, they demonstrate 
the possibility of replicating the 2010 Rwanda Demographic and Health Survey (DHS) using an 
R-based “GridSample” algorithm to sample the 2010 UN adjusted WorldPop gridded 
population dataset for Rwanda (stratifying by 30 districts and oversampling in urban areas). 

Regarding correlation analyses, it is important to note that to avoid issues relating to 
endogeneity, highly modeled gridded population datasets should not be used to make 
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predictions about any of the geospatial covariates used to model the population distribution 
or, similarly, to explore (spatial) relationships between the latter and the former. In such 
cases, it would be highly recommended to either use unmodeled datasets (such as in Cohen 
and Small, 1998) or re-modelling the population distribution without using the ancillary 
dataset of interest.  

For example, in The State of the Pacific's RMNCAH Workforce 2019 Report, UNFPA used 
WorldPop gridded population datasets, produced without using health facility locations as an 
ancillary dataset, to derive country-based gridded pregnancy datasets (James, et al. 2018) and 
combine them with travel time to the nearest facility providing emergency obstetric and 
newborn care (EmONC) services. This is done for 15 Pacific countries to identify areas 
underserved by RMNCAH (Maternal, Newborn, Child and Adolescent Health) workers and 
estimate the number of pregnancies potentially not having access to EmONC facilities.  

Similarly, Gaughan et al. (2019) examine the spatial relationship between gridded CO2 
emissions disaggregated using remote sensing-based night-time light data (ODIAC) and 
gridded population datasets, for Vietnam, Cambodia and Laos, driven by a set of ancillary 
datasets not including night-time lights. This is done to characterize potential errors and 
uncertainties associated with only using night-time light data to disaggregate “residential” 
CO2 emissions. 

Final Considerations 

In order to select the most appropriate gridded population and demographic datasets, end-
users should carefully consider the objective(s) of their analysis, the assumptions and 
modelling approach used to produce the gridded datasets, as well as the covariates used to 
produce them. Furthermore, it is also important to consider that, even if the use of geospatial 
covariates and advanced statistical modelling techniques produces a more accurate 
representation of population distribution (Stevens et al., 2015; Sorichetta et al., 2015), each 
ancillary dataset used are often model outputs themselves and thus they have a degree of 
uncertainty that will carry over into the gridded datasets. 

To this regard, the POPGRID Data Collaborative platform provides extended 
documentation/metadata and visual comparison tool for better understanding the source of 
uncertainties associated to both the input data and the model approach used to produce the 
various gridded population datasets. Nevertheless, as stated by Bai et al. (2018) “quantifying 
the accuracy of population distribution maps is recognized as a critical and challenging task” 
mostly due to the lack of available ground-truth compatible population data. To this end, the 
POPGRID Validation & Intercomparison Working Group has recently started a working 
document for collecting ideas, data, and metadata for extending and advancing previous 
validation efforts performed by the World Bank for Malawi, Engstrom et al. (2019) for 
SriLanka, Bai et al. (2018) for China, and Hall et al. (2012) for Sweden. 
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